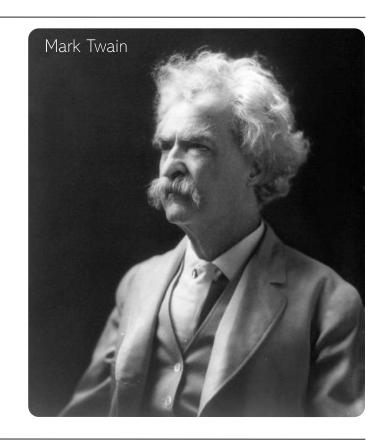


HOW DO WE MAKE OUR COWS MORE EFFICIENT?

	1930s 'Elite' Cornell Cow (1)	2020s 'Elite' Cow
Liveweight	570	700
MJ Energy Requirement/d	128	229
Kg DM Requirement/d	12.4	24.2
Energy Corrected Milk Yield (litres/d)	12.4	40
Litres ECM/kg DM Consumed (FCR)	1	1.65

• Per tonne of dry matter fed, the modern dairy cow produces 650 litres more milk than the dairy cow of the 1930s


1. Gaines, W. L. "Live weight and milk-energy yield in Holstein cows." Journal of Dairy Science 23.3 (1940): 259-265.

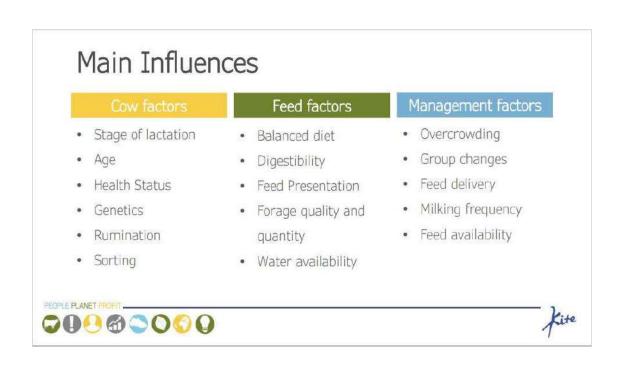
HOW DO WE MAKE OUR COWS MORE EFFICIENT?

- Per litre produced, the dairy industry of the 1940s required 10 times the land area compared to the modern dairy industry (2)
- Between 1980-2006, average fat + protein corrected milk yields of Holstein cattle improved by 3,500 litres/lactation (3)
- 55% of this improvement can be attributed to genetic improvement (3)
- 2. Capper, Jude L., Roger A. Cady, and Dale E. Bauman. "The environmental impact of dairy production: 1944 compared with 2007." Journal of animal science 87.6 (2009): 2160-2167.
- 3. Shook, G. E. 2006. Major advances in determining appropriate selection goals. J. Dairy Sci. 89:1349–1361.

IS THE END PRODUCT IMPORTANT?

Globally, milk supplies the following nutrients...⁽⁴⁾

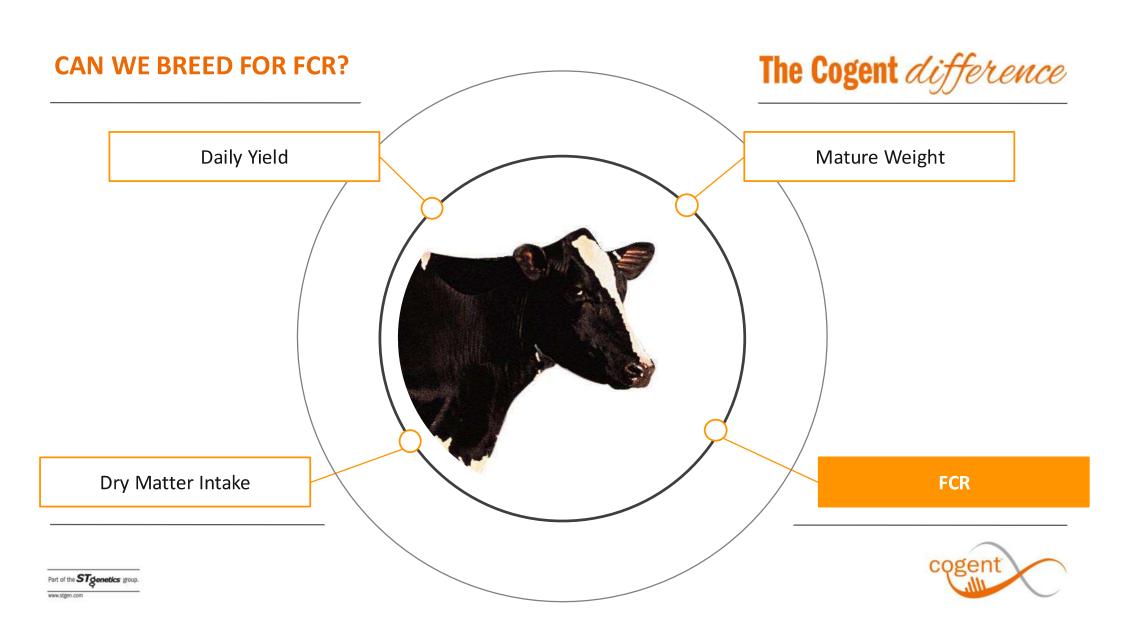
- 49% of calcium
- 24% of vitamin B2
- 18% of phosphorus
- 12% of protein
- 15% dietary fat
- Between 7 and 15% of essential amino acids



HOW DO WE MAKE OUR COWS EVEN MORE EFFICIENT?

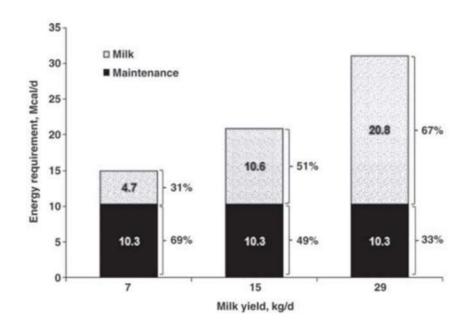
- Specialisation!
- We can't breed towards the middle of the road
- Cattle have been bred to suit systems this needs to continue
- Breed cattle that maximise the opportunities you give them.

THE IMPACT OF FCR – HIGH INPUT/OUTPUT HERDS


- Sensitivity analysis comparing a 2.5ppl milk price change to a 0.1 FCR change
- Example: 240 cows, 10,000 litres, 36ppl base price

+/- 2.5 ppl	+/- 0.1 FCR	
+/- £50,000 MOAF	+/- £52,560 MOAF	

- Every 0.1 gain in FCR gives an extra 100 litres sold per tonne of dry matter fed
- In high input/high output systems, FCR is hugely important.



THE LEVERS AT OUR DISPOSAL: YIELD

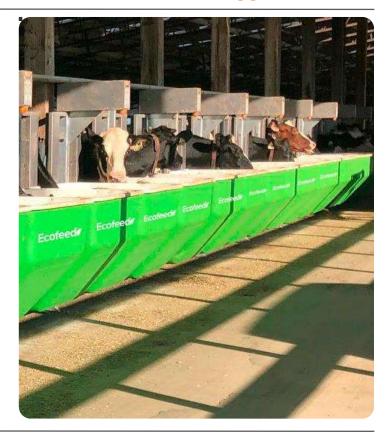
- In high input/high output systems, yield is the most powerful lever
- Needs to be energy corrected, and relative to milk contract
- High heritability traits = rapid genetic gain

THE LEVERS AT OUR DISPOSAL: BODYWEIGHT

The Cogent difference

- In high input/high output systems (10,000 ltrs+) its power is limited
- Especially in year round housed, 3x milking systems
- We don't want bigger cows
- <u>BUT</u> small cows irrespective of yield aren't efficient in these systems

	1930s 'Elite' Cornell Cow ⁽¹⁾	2020s 'Elite' Cow
Liveweight	570	700
MJ Energy Requirement/d	128	229
Kg DM Requirement/d	12.4	24.2
Energy Corrected Milk Yield (litres/d)	12.4	40
Litres ECM/kg DM Consumed (FCR)	1	1.65


• In systems where yield is limited (perhaps an extended grazing period) bodyweight becomes a more powerful lever than yield – SPECIALISATION!

THE LEVERS AT OUR DISPOSAL: EcoFeed

- Individual feed intake measurements on >10,500 animals
- Continuous data collection
 - ✓ 2,000 heifers/year
 - ✓ 1,500 milking cows/year
- Creating reference population for EcoFeed

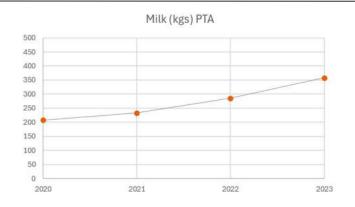
THE LEVERS AT OUR DISPOSAL: EcoFeed

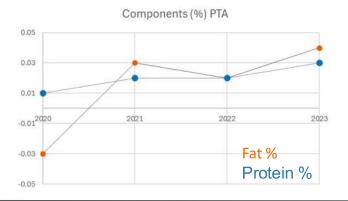
- Using this information we can directly impact Residual Feed Intake (RFI)
- We can identify more efficient animals that give more milk per kg of feed fed
- When we feed a batch of cows, we feed the average cow in that group
 - ✓ In order to excel, we need to identify those animals that are much better than average
- Put simply...

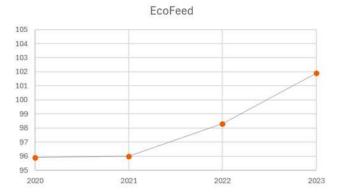
High EcoFeed animals are more efficient producers of milk

BREEDING FOR FCR

- We can use all this information to form a breeding strategy
- If we produce genetics that
 - 1. Yield more energy corrected milk
 - 2. At the same or less **bodyweight**
 - 3. Convert **<u>feed</u>** consumed more efficiently
- We will have a major impact on the FCR potential of our herds
- This will drive <u>profitability</u> and <u>sustainability</u>







Trial Results: Rob Goodwin - Longlands Farm

Trial Results: Rob Goodwin - Longlands Farm

	Milk kgs PTA	Fat %	Protein %	Bodyweight	EcoFeed	Genetic FCR (gFCR)
2020	208	-0.03	0.01	1.53	95.9	0
2023	358	0.04	0.03	0.83	101.9	+0.04
Change	+150	+0.07	+0.02	-0.7	+6	+0.04

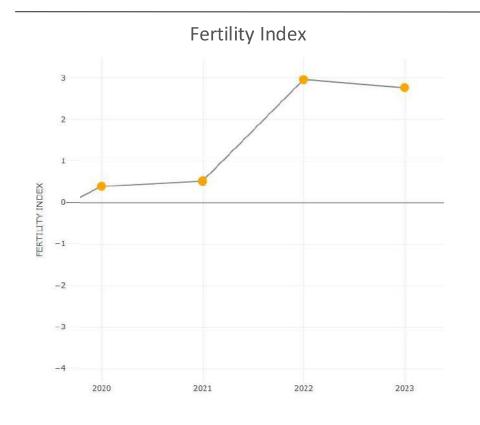
- These are not unsustainable levels of genetic gain
- We could comfortably maintain this level of progress for 10+ years with the genetics we have today, not to mention what we will have years down the line...

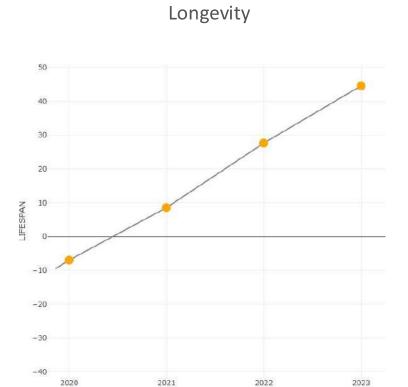
Projections: Rob Goodwin - Longlands Farm

	Milk kgs PTA	Fat %	Protein %	Bodyweight	EcoFeed	Genetic FCR (gFCR)
2020	208	-0.03	0.01	1.53	95.9	0
2030	708	0.20	0.08	-0.8	115.9	+0.13
Change	+500	+0.23	+0.07	-2.3	+20	+0.13

- The genetics to produce these animals to a large extent exist today
- +500kgs PTA would put another 1000kgs of milk in the tank per animal at Longlands farm

Projections: Longlands Farm-Impact


Change in gFCR	+0.13	
Feed fed per day (Fresh)	13t	
Tonnes DM fed/day	5.2	
Additional milk/day from increased efficiency	676 litres	
Milk Price (ppl)	36ppl	
Annual Value of Additional Milk	£88,800	


- We added 0.6 to FCR in 60 years (0.1/year) without genomics, RFI etc (improved genetics + environment)
- It is perfectly reasonable to assume that in 10 years with all these technologies we can >0.1 with genetics alone
- The impact for businesses that utilise this will be immense

Efficiency Goes Beyond Milking Cows

SUMMARY

- Holstein cows are already <u>extremely efficient</u>
- To further drive efficiency, breeding goals need to be system specific
- In high input/high output systems, <u>genetic FCR</u> is the most <u>economically</u> and <u>environmentally</u> important trait moving forwards
- Cows have to be bred regardless, make those breeding decisions work for <u>your system</u>

